Intro to TensorFlow em Português Brasileiro

Description

O objetivo deste curso é aproveitar a flexibilidade e a facilidade de uso do TensorFlow 2.x e do Keras para criar, treinar e implantar modelos de machine learning. Você aprenderá sobre a hierarquia da API TensorFlow 2.x e conhecerá os principais componentes do TensorFlow nos exercícios práticos. Mostraremos como trabalhar com conjuntos de dados e colunas de atributos. Você aprenderá a projetar e criar um pipeline de entrada de dados do TensorFlow 2.x. Você terá uma experiência prática com o carregamento de dados CSV, matrizes numpy, dados de texto e imagens usando o tf.Data.Dataset e com a criação de colunas de atributos numéricas, categóricas, em bucket e com hash.

Apresentaremos as APIs Keras Sequential e Keras Functional para mostrar como criar modelos de aprendizado profundo. Abordaremos as funções de ativação, perda e otimização. Nos laboratórios práticos dos notebooks do Jupyter, você poderá criar modelos de machine learning de regressão linear básica e de regressão logística básica e avançada. Você aprenderá a treinar, implantar e produzir modelos de machine learning em escala com o AI Platform do Cloud.

What you will learn

Introdução ao curso

Este curso é uma introdução ao TensorFlow 2.x, que incorpora a facilidade de uso do Keras para a criação de modelos de machine learning. Abordaremos o design e a criação de um pipeline de dados de entrada do TensorFlow 2.x, a criação de modelos de machine learning com essa ferramenta e com o Keras, a melhoria da acurácia desses modelos e a geração dos modelos para uso em escala.

Introdução ao TensorFlow

Apresentaremos o novo paradigma do TensorFlow 2.x. Você aprenderá sobre a hierarquia da API TensorFlow e conhecerá os principais componentes do TensorFlow, os tensores e as variáveis com exercícios práticos.

Projetar e criar um pipeline de dados de entrada do TensorFlow

Mostraremos como trabalhar com conjuntos de dados e colunas de atributos. Você terá uma experiência prática com o carregamento de dados CSV, matrizes numpy com tf.data.Dataset, dados de texto e imagens usando o tf.Data.Dataset e com a criação de colunas de atributos numéricas, categóricas, em bucket e com hash.

Como treinar redes neurais com o TensorFlow 2 e com a API Keras Sequential

Neste módulo, você aprenderá a escrever modelos do TensorFlow com a API Keras Sequential. Mas, antes disso, falaremos sobre funções de ativação, perda e otimização. Em seguida, você conhecerá a API Keras Sequential para aprender a criar modelos de aprendizado profundo com ela. Você também verá como implantar o modelo para previsão na nuvem.

What’s included