Description
This course explores the concepts and algorithms at the foundation of modern artificial intelligence, diving into the ideas that give rise to technologies like game-playing engines, handwriting recognition, and machine translation. Through hands-on projects, students gain exposure to the theory behind graph search algorithms, classification, optimization, machine learning, large language models, and other topics in artificial intelligence as they incorporate them into their own Python programs. By course’s end, students emerge with experience in libraries for machine learning as well as knowledge of artificial intelligence principles that enable them to design intelligent systems of their own.
What you’ll learn
- graph search algorithms
- adversarial search
- knowledge representation
- logical inference
- probability theory
- Bayesian networks
- Markov models
- constraint satisfaction
- machine learning
- reinforcement learning
- neural networks
- natural language processing